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ABSTRACT 

Study of finite projective planes which have a polarity preserved by many homo- 
logies. 

1. Introduction 

A standard method of studying projective planes is to use perspectives. After 

presenting a useful but elementary criterion for the transitivity of a finite per- 

mutation group, we consider projective planes having many perspectivities. 

Wagner 1-16], Piper [14], [15], and Cofman [4] have shown that a finite projec- 

tive plane is desarguesian if either each point in the plane isthe center of a non- 

trivial elation, or each is the center of a nontrivial homology, but no point or 

line is fixed by all perspectivities. Dembowski [5, p. 193, footnote] has asked 

about the possibility of generalizing these results. Using the analogue for projective 

planes of the Chevalley commutator relations, we obtain information concerning 

(not necessarily finite) projective planes in which each point is the center of a 

nontrivial persp~ctivity but in which no point or line is fixed by all collineations. 

Specializing to the finite case, we obtain a result which was discovered indepen- 

dently by C. Hering and A. Hoffer: such a plane is desarguesian, except possibly 

if there is a polarity of the plane preserved by all collineations. By a result of 

Baer [2], in the exceptional case the plane must have square order. 

We then consider the more general situation of a finite projective plane # 

and a polarity 0 of ~ such that each nonabsolute line containing an absolute 

point is the axis of a nontrivial perspectivity preserving 0. In particular, elations 
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are not assumed to be present. It is shown that such a plane is desarguesian if 0 

is preserved by an involutory perspectivity. From this it follows easily that ~ is 

desarguesian if its order is not a fourth power. Note that it is straightforward to 

use [10] to determine the structure of collineation groups of planes of even 

order which are generated by involutory elations and which fix no point. We 

will therefore deal primarily with planes of odd order. 

The major obstacle to the study of collineation groups of finite projective 

planes are probably Baer involutions. Even if involutory perspectivities are 

present, only a few results are known which allow one to deal with these un- 

pleasant creatures. A primary goal in the writing of this paper was to try to handle 

collineation groups which may contain Baer involutions, particularly in the case 

of planes of odd order. This led to the results presented in Section 2. 

We use standard notation, essentially that of [-5]. The only unusual notation is 

~z,  used to designate the set of fixed points and lines of a set Z of collineations of 

a projective plane ~. 

I am indebted to Alan Hoffer for suggesting problems of the type studied in 

Section 5. 

2. A transitivity criterion 

THEOREM 2.1. Let ~ be a finite projective plane of odd order, and F a 

collineation oroup fixing a line A and a point a c A .  Suppose that for some 

b e A - a. F(b) contains an involutory homology but no Klein 9roup. Then F is 

transitive on those points c ~ A - a which are centers of nontrivial homologies. 

See (3.1) for the reason the assumption was made concerning Klein groups. 

(2.1) is an immediate consequence of the following simple result on permutation 

groups, which is a useful companion to Gleason's lemma. 

LEMMA 2.2. Let G be a permutation group on a finite set fL Suppose that 

each point is fixed by a group of prime power order fixing only that point. 

Suppose further that there is a point o~ ~ f~ and an involution t ~ G, fixing only 

such that t commutes with no G,-conjugate # t of t. Then G is transitive on f~. 

PROOF. If t and u are conjugate in G and tu = ut, then u fixes ~, and hence 

t = u by hypothesis. Hence, by Glauberman's Z*-theorem [-8], tO(G)~ Z(G[O(G)). 

Since O(G) has an odd number of Sylow p-subgroups for any prime p, it follows 

that t normalizes a Sylow p-subgroup of O(G), and hence also one of G (as 

G = O(G)C~(t)). 
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Suppose f le  fl - u~. By hypothesis, there is a prime p and a p-subgroup of Us 

fixing only ft. Then ] fig [ _ 1 (mod p), so that a Sylow p-subgroup P of G fixes a 

unique point of tic. We may assume that t normalizes P, and hence fixes some 

point of tic. Since t fixes only ~ 6 tic, the supposition is absurd. 

We will need another application of the preceding lemma. 

THEOREM 2.3. Let F be a collineation group of a finite projective plane of 

odd order. Let L and X be lines, and x and y points of L. Assume that 

(i) F(x,X) contains an invoIutory homology, but no Klein group; 

(ii) F(y) contains a nontrivial elation with axis # L; 

(iii) Ir(y)i is odd; and 

(iv) x r~ Lr yr. 

Then F(L) contains an involutory homology, and x ~ = X N L  for some 7 ~ F 

PROOF. Suppose X ~ L e x r. Then an involution a e F(x, X) centralizes some 

involution z e F(X n L). It is well known that this implies that #3 e F(L) (see 

(3.1i)). 

Next, suppose X n L S x  r. Then (2.2) applies to F acting on x r w y  r ,  and 

this contradicts (iii). 

We mention without proof a presumably less useful relative of (2.2). 

LEMMA 2.4. Let G be a permutation group on a finite set D. Suppose that, 

for each ctE~), there is a normal subgroup N(~)#I  semiregular on f l -  o~. If. 

I N(ct) I is even for some o~, then G has at most two orbits on ~. 

We note that there are examples where two orbits actually occur. We leave it 

to the reader to concoct further applications of (2.2) or (~.4) to the study of 

elations and homologies of finite planes. 

3. Known results 

Let ~ be a projective plane. 

LEMMA 3.1. (Ostrom and L~neburg; see [13, (2.1)].) Let e be an involutory 

(x, X)-homology and z an involutory (y, Y)-homology. I f  X # Y and tzz = z#, 

then 

(i) ~ is an involutory (X r~Y, xy)-homology, and 

(ii) ~r is the only (x, X)-homology. 
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COROLLARY 3.2. ([13, (2.2)].)There is no abelian collineation group of ~ of 

order 8 generated by three involutory homologies not all having the same 

axis. 

LEMMA 3.3. I ra  subplane of ~ is fixed by a nontriviaI perspectivity 7, then 

the center and axis of y are in the subplane. 

LEMMA 3.4. (Baer [2].) A polarity 0 of a finite projective plane of order n 

has at least n + 1 absolute points. I f  this number is n + 1, 0 is orthogonal; if it 

is greater than n + 1, then n is a square. 

A polarity 0 of a finite projective plane is called regular if every nonabsolute 

line containing at least one absolute point contains the same number s + 1 of 

absolute points. Call a nonabsolute line good if it contains absolute points and 

bad otherwise; a point x is good (or bad) if x ~ is good (or bad). The main facts 

concerning regular polarities are summarized in (3.5). 

LrMMA 3.5. Let 0 be a regular polarity of a finite plane of order n. 

(i) ([2]; [5,p. 154].) Each good line contains exactly s(n - 1)/(s + 1) good 

points and ( n - s 2 ) / ( s  + 1) bad points. Each bad line contains exactly 

(sn + 1)/(s + 1) good points and (n + s)/(s + 1) bad points. There are 

exactly sn + 1 absolute points. Moreover, s - n(mod 2). 

(ii) ([7], [11].) I f  o~ is a Baer involution preserving O, and ~ is its fixed point 

subplane, then 0 induces an orthogonal polarity on ~ .  Thus, a fixes exactly 

~/n + i absolute points. 

LEMMA 3.6. I f  a collineation ;~ preserves a polarity 0 and fixes three 

non-collinear absolute points of O, then ~ is planar. 

PROOF. If V fixes the noncollinear absolute points x,y, z, then it fixes the 

quadrangle x, y, z, x ~ n yO. 

LEMMA 3.7.  Let 0 be an orthogonal polarity of a projective plane JJ of odd 

order. Suppose that each nonabsolute line containing absolute points is the axis 

of a nontrivial homology preserving O. Then ~ is desarguesian. 

PROOF. Let F be the group generated by the given involutory homologies. If x 

is an absolute point, then Gleason's lemma implies that F~ is transitive on the 

remainirg absolute poirts. "lhe resull is nox~ an irr.~ediate consequence of 

[13, (2.4)]. 
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LEMMA 3.8. Let 0 be an orthogonal polarity of a projective plane of order n. 

Let ~ be a nontrivial (a,A)-perspectivity preserving O. Then A = a ~ , and one 

of the following holds. 

(i) n is odd, I ~1 = 2, and a is nonabsolute. 

(ii) n is even, and a is absolute. 

(iii) n is even, and A contains all absolute points. 

The proof of (3.8) is straightforward, and will be omitted. 

4. The commutator relations 

Given a projective plane and a collineation group F, the following result will 

be denoted [uUvV], where u, v are points and U, Vare lines. 

[uUvV] : If u # v e U # V, u ~ V, F(uU) # 1, and F(vI0 # 1, then F(v, U) # 1. 

In fact 1 # [F(u, U),F(v, V)] =< F(v, U) (see [5, p. 121]). This statement is the 

analogue for arbitrary projective planes of the Chevalley commutator relations. 

In this section we present some straightforward applications of [uUvV] to pro- 

jective planes which are not necessarily finite. 

THEOREM 4.1. Let F be a collineation group of a projective plane ~ ,  fixing 

no point or line. such that each point is the center of a nontrivial perspectivity 

in F. Then one of the following holds. 

(i) I f  L is a line for which F(L) ~ 1, then F(x,L) # l for all x e L .  

(ii) There is a 1-1 mapping O from the set of points into the set of lines such that 

y e x ~ implies x ~ yO, ~ 0 = O?for all ~ ~ F, and F(x, X) ~ 1 if  and only i f X  = x ~ 

PROOF. Suppose (i) does not hold. Most of the proof will be devoted to 

obtaining a contradiction from the existence of a line A and distinct points a, a', 

for which F(a, A) r 1 and F(a', A) ~ 1. 

First suppose a , a ' e A .  If b e A ,  then F (b ,A)~  1, since if F (b ,B)~  1 with 

B # A, we may assume that a ~B, and then [aAbB] implies that F (b ,A)~  1. 

Now let X r A r be any line with F(X) ~ 1, and let F(x, X) r 1. Then, as each 

point of A can be moved off A by some element of F, we may assume that x r A. 

Let y = A c3 X, so y ~ x. Then [xXyA] implies that F(y, X) r 1. Let ~ ~ F with 

y r A v , and set y' = A v c3 X ~ y.  Then F(y', X) ~ 1 by [yXy 'A] .  It follows 

that F(z, X) ~ 1 for all z e X. This is a contradiction, as we have assumed that (i) 

does not hold. 
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In particular, if F(u, U) ~ 1 with u ~ U, then Fv fixes u, so v ~ U - u and 

F(v, V) # 1 imply that u E V. 

Next, consider the possibility a~A,  a '~A,  F ( a , A ) #  1, F ( a ' , A ) #  1. Let 

b ~ A - a and F(b, B) # 1, so a ~ B. Also, a ' ~  B (otherwise [a'AbB] implies that 

F(b,A) # 1). Thus, F(b)= F(b, aa') for all b c A -  a. Let a ~ # a, y ~ F. Then 

F(a~,A~)#I ,  so a ~ A .  Similarly, aCA ~. Using b = A n A  ~, we find that 

F(b, aa') ~ 1 and F(b,a~a '~) # 1. Thus, aa' = a~a 'y, so a r _  aa', which is not 

the ease. 

Finally, suppose that aq~A, a '#A ,  a ~ a', F(a,A) ~ 1, and F(a ' ,A) # 1. Set 

e = A t3 aa'. If  b ~ A - e and F(b, B) # 1, then B = aa' (if, for example, a r B, 

then F ( b , A ) #  1 by [aAbB]). Let ev r A, y e F .  Clearly, F(a,A) or F(a ' ,A) 

moves e v. Thus, we can find x and X for which F(x, X) moves e. In particular, 

x ~ e r X.  By what has been proved for all b ~ A - e, we know that x r A and 

that the roles of A and B = aa' can be reversed, so x ~ B  also. Set 15 = A t3X 

and d = B n X ,  so F(d, A) ~ 1 and F(b, B) # 1. Now [xXdA] and [xXbB] 

imply that F(O, X) ~ 1 and F(b, X) # 1, which is not the case. 

We have now shown that, for each line L, either F(L) = 1 or F(L) = F(c, L) 

for a unique point c. It remains only to consider the dual situation. 

Suppose that F(a, A) # 1 and F(a, A') ~ 1, where a ~ A ~ A'. Let b ~ A, b # a, 

A n A', and F(b, B) # 1. Then a ~ B. Consequently, F(a, A') fixes B and moves b, 

so F(B) ~ F(b, B), which is not the case. 

Finally, suppose F ( a , A ) ~  1, F ( a , A ' ) # I ,  ar  aCA',  and A ~ A ' .  Let 

A r 3 A ' ~  b e A  and F (b ,B)~  1. Then a e B, so F ( a ,B ) ~  1 by [bBaA']. This 

contradiction completes the proof of the theorem. 

COROLr.ARV 4.2. Let F be a collineation group of a projective plane ~ such that 

F(x) ~ 1 and F(X) ~ 1 for all points x and lines X. Then one of the followino 

holds. 

(i) F ( x X ) ~ l  for all X and all x ~ X .  

(ii) F preserves a polarity 0 of ~ such that F(x,X) ~ 1 if and only if  X = x e. 

COROLrA~Y 4.3. (Gleason [9], Waoner [16], Piper [14].) A finite projective 

plane is desarouesian if each point is the center of a nontrivial elation, while no 

point or line is fixed by all elations. 

COROI-LARY4.4. (Wagner [161 Piper [15], Cofman [4].) A finite projective 

plane is desarouesian if each point is the center of a nontrivial homolooy, while 

no point or line is fixed by all homologies. 
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COROLLARY4.5. (C. Hering, A. Hoffer.) Let F be a collineation group of a 

finite projective plane ~ such that F(x) ~ 1 for all points x. Suppose that F fixes 

no point or line. Then ~ is desarguesian, except possibly if there is a polarity 

0 preserved by F such that F(x, X) ~ 1 if and only if X = x ~ 

PROOF OF (4.3), (4.4.) AND (4.5). 1" is given in (4.5); in (4.3) and (4.4), let F be 

the group generated by the given perspectivities. Then (4.1) applies to F. If (4.1ii) 

holds then 0 is a polarity. This is impossible in (4.3) and (4.4), as we would have 

all points absolute or all nonabsolute. 

Suppose (4.1i) holds. Let F(X) ~ 1, F(Y) ~ 1, x ~ X, y e Y, x ~ Y and y ~ X. 

Set z = X ~ Y. By (4.1i), F(z,X) ~ 1 and F(z, Y) ~ 1; hence, both are p-groups 

for some prime p [-9, (1.2)]. For the same reason, F(x, X) and F(y, Y) are p-groups. 

Since both fix xy, Gleason's 1emma implies that (F(x, X), F(y, Y) ) can move x 

to y. 

Consequently, since F fixes no point or line, it is transitive on the centers of 

nontrivial elations in F. We know that z is the center of nontrivial elations with 

different axes. Thus, for all x' e X, F(x) contains elations of order p with dif- 

ferent axes. Now [9, (1.6)] readily implies that ~ is desargueasian. 

REMARK. The above proof of (4.3) and (4.4) is short and elementary; only 

the preceding argument and the second paragraph of the proof of (4.1) are needed. 

It is natural to ask what happens if, in (4.5), we allow a point or line to be 

fixed by all the given perspectivities. In this case, it is not hard to show that the 

plane is a translation plane or a dual translation plane. 

5. Polarities 

In this section we will study the exceptional situation in (4.5) for the case of 

finite projective planes. More generally, we will consider the following situation. 

Hypothesis (#).  0 is a polarity of a finite projective plane ~,  A its set of 

absolute points, and F a collineation group preserving 0 such that F(L) ~ 1 

for every nonabsolute line L meeting A.  Moreover, 0 is not orthogonal, and 9 ~ 

has order q2 > 4. 

We conjecture that such a plane ~ must be desarguesian. 

A comment is needed concerning the last sentence of (#) .  If 0 were orthogonal, 

then ~ would have odd order, and hence be desarguesian by (3.7). Thus, there is 

no loss in assuming that 0 is not orthogonal, and then that ~ must have square 

order (3.4). Since a plane of order 4 is desarguesian, we may assume qZ > 4. 
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Also note that the polarity 0 defined in (4.5) is not orthogonal by (3.8). 

A major obstacle to the study of (~:) is the fact that F is not known to be 

transitive on A, although we cannot prove ~ is desarguesian even when 0 is 

defined as in (4.5) and F is transitive on A. As we will see, ~' is desarguesian if F 

is transitive on the nonabsolute lines meeting A. 

LEMMA 5.1. Assume ( ~ ). Then F acts faithfully on each of its orbits on A. 

PROOF. Let A' be such an orbit, and consider F(A'). As F fixes no point or 

line, F(A') is planar by (3.6). Since there are q2 nonabsolute lines through each 

absolute point, F ( A ' ) =  1 by (3.3). 

THEOREM 5.2. Assume ( ~) .  Then F has no nontrivial solvable normal 

subgroup. 

PROOF. Deny this. Then F has a nontrivial normal elementary abelian 
p-subgroup A for some prime p. 

We first show that A fixes no point of ~ .  For suppose A fixes y. Since q2 > 3 

we find, using the homologies in F, that y rcontains a quadrangle. As A fixes each 

point of yr, A is planar. Moreover, F acts on ~A. This contradicts (3.3). 

We next show that A is semiregular on A. For suppose A~ # 1 for some x ~ A. 

Since A centralizes Ax while fixing no point of ~', Ax fixes a triangle of absolute 

points, and hence is planar by (3.6). There is a nonabsolute line M on x not in ~ '~ .  

Then F(M) normalizes A~ and hence acts on 9~A~. Once again, by (3.3), this is 

impossible. 

Let x ~ A  and 1 ~ ~ A ,  so x b ~x .  We claim that c~ fixes L = xx ~. In fact, if 

1 #~ ,eF(L)  then x ~ = x ~r = x Y-'~, so V-1~y6-, eA~ = 1. Consequently, c5 

commutes with ), and hence fixes L. In particular, AL is transitive on x A n L. 

Consider the set ~ of fixed points and lines of 6. Each absolute point is on a 

line of 9~. However, ~6 n A = Z ,  so : ~  is not a subplane by (3.4). Moreover, A 

acts on 9~ and fixes no point of g6.  Thus, 9~ can only be a triangle with nonabso- 

lute vertices a, b,c. Since A fixes {a,b,c}, it follows that p = 3 and l al = 9. 

Each line L on x cA containing two points of x ~contains three such points, 

and AL is transitive on these points. Thus, there are just four such lines L, one for 

each subgroup of A of order 3. Since q2 > 6, there are distinct nonabsolute lines 

M and M' on x with M n x a = M'  n x A = {x}. Then F(M) and F(M') act on 

x A -  {x} semiregularly, so I r(M)l and IF(M') I are even. Let a e F ( M )  and 

a ' e F ( M ' )  be involutions. Then both involutions invert A, so aa' fixes each 
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y e x ~. However, if we choose y e x A -  {x}, then M~ ~ are collinear, as are 

(M')  o, y, y~ (since y ~ -- y~'), so y ~ M ~  x o. Since x ~ n A = (x}, we have 

arrived at a contradiction. 

COROLLARY5.3. I ~ has no nontrivial normal subgroup of odd order, and no 

nontrivial normal 2-subgroup. 

PROOF. This is immediate by (5.2) and [6]. 

THEOREM 5.4. Assume (~-). Then ~ is desarguesian if  I" contains an in- 

volutory perspectivity. 

PROOF. Suppose first that q2 is even, so I F(x)] is even for some x e A. By (5.1), 

F acts faithfully on A ' =  x r. By (5.3) and [10], F has a normal subgroup 

A ~ PSL(2,2e), Sz(2~), or PSU(3,2 e) for some e, where A acts on A' in its usual 

2-tran itive representation. Since A' is not contained in any line, the points of A' 

and the lines L with I L h A '  I > 2 form a design with 2 =  1 and some k. Moreover, 

2 ~ l k -  1,  so PSL(2,2 ~) and Sz(2 e) cannot occur. If  there is a nonabsolute line 

M on x with M n A ' =  {x}, then F(M) acts semiregularly on A' - {x), whereas 

A' - { x } l  = 2 3~ and t r (M) l  ! q 2 - 1 .  Thus, each of  the q2 nonabsolute lines 

meeting A' contains k points of A'. Using F(x), we find that if x e L, then L n A' 

is a union of lines of the usual design associated with A. Since Ax permutes the 

latter lines 2-transitively, it follows that 2 2e = qZ. Hence, ~ is desarguesian by [12]. 

Now suppose q2 is odd. There is a line M for which It(M) I is even. Clearly, M 

is not absolute. 

We claim that there is no nonabsolute point x for which l"(x) contains a Klein 

group. For, suppose there is such an x. Let yO be a nonabsolute line on x meeting A, 

so y ~ x ~ (To verify that there is such a line, note that otherwise we would have 

q2 + 1 > [ A [, so 0 would be orthogonal by (3.4).) By hypothesis, F(y) ~ 1. Set 

L = xy, so y = x ~ ~ L .  Note that F(x) normalizes F(y), so by (3.1ii) IF(y) I is 

odd. In particular, y ~ x r. Let T be the orbit of x under FL. Then F(x) is semiregular 

on T -  {x}, so I TI - 1 is a power of 2 by [10]. However, F(y) < Fxr. also acts 

semiregularly on T -  {x}, whereas It(y) I is odd. This contradiction proves our 

claim. 

Suppose M n A = ~ .  There is a nonabsolute line L on M ~ meeting A. By 

(3.1), (2.3) applies to rL, using x = M ~ and y e L n A .  Consequently, IF(L)[ 

is even. 

Thus, we assume that there is a point a e M m A .  By (3.1), (2.1)applies to F(~ 
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acting on a ~ Thus, 1" a is transitive on the q2 lines other than a ~ on a whenever 

one of  these lines is the axis of an involutory homology. Since each absolute point 

is on such a line through a, it follows that F is transitive on the nonabsolute lines 

meeting A. Consequently, each such line contains the same number of absolute 

points, so that 0 is a regular polarity. 

We will use the notation and terminology of (3.5), where n = q2 and s > 1. 

If  s = q, (5.4) follows from [13, (6.5)]. We may thus assume that s < q, so there 

are bad lines. Call ~ e r" good (or bad) if it is an involutory homology with good 

(or bad) axis. 

If  B is a bad line, by(3.5i)it  has more good points than bad points. Thus, B 

contains a good point x for which x ~ n B is also good. Since IF(x)[ and 

[ F ( x ~  B) [are known to be even, F(B) contains a bad involution by (3.1i). 

Similarly, if L is a good line, it contains a good point x for which x ~ c~ L is 

good. Consequently, F contains a Klein group whose involutions are all good. 

We may assume that F is  generated by its involutory homologies. By (3.1 ii) and 

the transitivity on good lines, all good involutions are conjugate. Also, each 

involutory homology is the product of two good involutions. It follows that 

F has no normal subgroup of index 2. 

In particular, F induces only even permutations on A. Since a bad involution 

fixes no point of A, [A [ = sq 2 + 1 - 0 (rood 4). 

We claim that F contains no Baer involution ,t. For, let ~ be such an involution. 

By (3.5ii), (sq 2 + 1) - ( q  +1)  --- 0 (mod4), so q = 3 (rood4). However the total 

number of points moved by ct is then (q4 + q2 + 1) - (q2 + q + 1) = 2 (mod4), 

which is impossible. 

Consequently, by (3.2), F has no elementary abelian subgroup of  order 8. On 

the other hand, Off') = 1, F has no central involution, and F has no normal 

subgroup of  index 2. Consequently, a result of  Alperin [1, Prop. 1, its proof, and 

the remark following its proof] implies that all involutions in F are conjugate, 

which is ridiculous. 

COROLLARY5.5. Assume  ( 4~ ). Suppose that, i f  ~ is a Baer  involution in F, 

then 0 induces an orthogonal polar i ty  on ~=. Then ~ is desarguesian.  

PROOF. By (5.3) and a theorem of Brauer and Suzuki [3], F contains a Klein 

group (ct, p) .  By (5.4), we may assume that ~,fl and ~fl are Baer involutions. 

Since fl induces either 1 or an involution on ~a, (~,fl)  fixes a line L such that, 

if n is even, then Lis nonabsolute and contains just one absolute point of  0 lying 
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in ~ r~ ~ .  Then (ct, fl) acts on the nontrivial  group F(L) o f  odd order. We 

may thus assume Cr~.)(ct) # 1. Since Crcz.)(ct) acts faithfully on #~, this contra- 

dicts (3.8). 

COROLLARY 5.6. Assume ( 4~ ). Then ~ is desarguesian if  q2 is not a fonrth 

power. 

PROOF. (3.4) and (5.5). 

COROLLARY5.7. Assume (~-). I f  F is transitive on those nonabsolute lines 

which meet A, then ~ is desarguesian. 

PROOF. (3.5ii) and (5.5). 

THEOREM 5.8. Let @ be a finite projective plane each point of which is the 

center of a nontrivial perspectivity. Suppose that no point or line is fixed by all 

collineations. Then ~ is desarguesian if either (i) the order of ~ is not a fourth 

power, or (ii) ~ has an involutory perspectivity. 

PaOOF. (4.5), (3.7), (5.4), and (5.5). 
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